60 research outputs found

    Comparing Lab-based and Telephone-based Speech Recordings Towards Parkinson's Assessment: Insights from Acoustic Analysis

    Get PDF

    Exploring pause fillers in conversational speech for forensic phonetics: findings in a Spanish cohort including twins

    Get PDF
    Pause fillers occur naturally during conversational speech, and have recently generated interest in their use for forensic applications. We extracted pause fillers from conversational speech from 54 speakers, including twins, whose voices are often perceptually similar. Overall 872 tokens of the sound [e:] were extracted (7-33 tokens per speaker), and objectively characterised using 315 acoustic measures. We used a Random Forest (RF) classifier and tested its performance using a leaveone- sample-out scheme to obtain probabilistic estimates of binary class membership denoting whether a query token belongs to a speaker. We report results using the Receiver Operating Characteristic (ROC) curve, and computing the Area Under the Curve (AUC). When the RF was presented with at least 20 tokens in the training phase for each of the two classes, we observed AUC in the range 0.71-0.98. These findings have important implications in the potential of pause fillers as an additional objective tool in forensic speaker verification

    Developing a large scale population screening tool for the assessment of Parkinson's disease using telephone-quality voice

    Get PDF
    Recent studies have demonstrated that analysis of laboratory-quality voice recordings can be used to accurately differentiate people diagnosed with Parkinson's disease (PD) from healthy controls (HC). These findings could help facilitate the development of remote screening and monitoring tools for PD. In this study, we analyzed 2759 telephone-quality voice recordings from 1483 PD and 15321 recordings from 8300 HC participants. To account for variations in phonetic backgrounds, we acquired data from seven countries. We developed a statistical framework for analyzing voice, whereby we computed 307 dysphonia measures that quantify different properties of voice impairment, such as, breathiness, roughness, monopitch, hoarse voice quality, and exaggerated vocal tremor. We used feature selection algorithms to identify robust parsimonious feature subsets, which were used in combination with a Random Forests (RF) classifier to accurately distinguish PD from HC. The best 10-fold cross-validation performance was obtained using Gram-Schmidt Orthogonalization (GSO) and RF, leading to mean sensitivity of 64.90% (standard deviation, SD 2.90%) and mean specificity of 67.96% (SD 2.90%). This large-scale study is a step forward towards assessing the development of a reliable, cost-effective and practical clinical decision support tool for screening the population at large for PD using telephone-quality voice.Comment: 43 pages, 5 figures, 6 table
    corecore